
Buffered Coscheduling: A New Methodology for
Multitasking Parallel Jobs on Distributed Systems

�

Fabrizio Petrini
�

and Wu-chun Feng
���

�
fabrizio, feng � @lanl.gov

�
Computing, Information, and Communications Division

Los Alamos National Laboratory
Los Alamos, NM 87545

�
School of Electrical & Computer Engineering

Purdue University
W. Lafayette, IN 47907

Abstract

Buffered coscheduling is a scheduling methodology for
time-sharing communicating processes in parallel and dis-
tributed systems. The methodology has two primary fea-
tures: communication buffering and strobing. With commu-
nication buffering, communication generated by each pro-
cessor is buffered and performed at the end of regular inter-
vals to amortize communication and scheduling overhead.
This infrastructure is then leveraged by a strobing mecha-
nism to perform a total exchange of information at the end
of each interval, thus providing global information to more
efficiently schedule communicating processes.

This paper describes how buffered coscheduling can
optimize resource utilization by analyzing workloads with
varying computational granularities, load imbalances, and
communication patterns. The experimental results, per-
formed using a detailed simulation model, show that
buffered coscheduling is very effective on fast SANs such
as Myrinet as well as slower switch-based LANs.
Keywords: distributed resource management, parallel job
scheduling, distributed operating systems, coscheduling,
gang scheduling.

1. Introduction

In recent years, researchers have developed parallel
scheduling algorithms that can be loosely organized into

�
This work was supported by the U.S. Dept. of Energy through Los

Alamos National Laboratory contract W-7405-ENG-36. This paper is LA-
UR 00-892.

three main classes, according to the degree of coordination
between processors: explicit coscheduling, local scheduling
and implicit or dynamic coscheduling.

Explicit coscheduling [5] ensures that the scheduling
of communicating jobs is coordinated by creating a static
global list of the order in which jobs should be scheduled
and then requiring a simultaneous context-switch across all
processors. Unfortunately, this approach is neither scal-
able nor reliable. Furthermore, it requires that the schedule
of communicating processes be precomputed, thus compli-
cating the coscheduling of applications and requiring pes-
simistic assumptions about which processes communicate
with one another. Lastly, explicit coscheduling of parallel
jobs also adversely affects performance on interactive and
I/O-based jobs [10].

Conversely, local scheduling allows each processor to
independently schedule its processes. Although attractive
due to its ease of construction, the performance of fine-
grain communicating jobs degrades significantly because
scheduling is not coordinated across processors [7].

An intermediate approach developed at UC Berkeley
and MIT is implicit or dynamic coscheduling [1, 4, 12, 16]
where each local scheduler makes decisions that dynami-
cally coordinate the scheduling actions of cooperating pro-
cesses across processors. These actions are based on local
events that occur naturally within communicating applica-
tions. For example, on message arrival, a processor spec-
ulatively assumes that the sender is active and will likely
send more messages in the near future.

In this paper, we present a new methodology that conju-
gates the positive aspects of explicit and implicit coschedul-
ing using three techniques: communication buffering to

Proceedings of the 2000 International Parallel and Distributed Processing Symposium (IPDPS 2000).



amortize communication overhead (a technique similar to
periodic boost [11]); strobing to globally exchange infor-
mation at regular intervals; and non-blocking, one-sided
communication to decouple communication and synchro-
nization. By leveraging these techniques, we can perform
effective optimizations based on the status of the parallel
machine rather than on the limited knowledge available lo-
cally to each processor.

The rest of the paper is organized as follows. Section 2
describes the motivation and features of buffered coschedul-
ing. Preliminary results are presented in Section 3. Finally,
we present our conclusions in Section 4.

2 Multitasking Parallel Jobs

Our study of resource utilization in SPMD programs in-
spired our buffered coscheduling methodology which con-
sists of communication buffering, strobing, and optionally
non-blocking communication. This methodology allows all
the communication and I/O which arise from a set of par-
allel programs to be overlapped with the computations in
those programs.

2.1 Motivation

Figure 1 shows the global processor and network utiliza-
tion during the execution of an FFT transpose algorithm
on a parallel machine with ����� processors connected with
an indirect interconnection network using state-of-the-art
routers [3]. Based on these figures, we observe an uneven
and inefficient use of system resources. These characteris-
tics are shared by many SPMD programs, including un-
classified ASCI application codes such as Sweep3D [8].
Hence, there is tremendous potential for increasing resource
utilization in a parallel machine.

0

10

20

30

40

50

60

70

80

90

0 10000 20000 30000 40000 50000 60000 70000

A
ct

iv
e 

pr
oc

es
so

rs

Time (cycles)

Active processors

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10000 20000 30000 40000 50000 60000 70000

N
et

w
or

k 
U

til
iz

at
io

n

Time (cycles)

Network utilization

a) b)

Figure 1. Resource Utilization in an FFT
Transpose Algorithm.

Another important characteristic shared by many paral-
lel programs is their access pattern to the network. The vast
majority of parallel applications display bursty communica-
tion patterns with alternating spikes of impulsive commu-
nication with periods of inactivity [13]. Thus, there exists

a significant amount of unused network bandwidth which
could be used for other purposes.

2.2 Communication Buffering

Instead of incurring communication and scheduling
overhead on a per-message basis, we accumulate the com-
munication messages generated by each processor and
amortize the overhead over a set of messages. By delay-
ing the communication, we allow for the global scheduling
of the communication pattern. And because we can imple-
ment zero-copy communication, this technique can theoret-
ically achieve performance comparable to OS-bypass pro-
tocols [2] without using specialized hardware.

2.3 Strobing

The uneven resource utilization and the periodic, bursty
communication patterns generated by many parallel appli-
cations can be exploited to perform a total exchange of in-
formation and a synchronization of processors at regular in-
tervals with little additional cost. This provides the paral-
lel machine with the capability of filling in communication
holes generated by parallel applications.

To provide the above capability, we propose a strobing
mechanism to support the scheduling of a set of parallel
jobs which share a parallel machine. At a high level, the
strobing mechanism performs an optimized total-exchange
of control information which then triggers the downloading
of any buffered packets into the network.

The strobe is implemented by designating one of the pro-
cessors as the master, the one who generates the “heartbeat”
of the strobe. The generation of heartbeats is achieved by
using a timeout mechanism which can be associated with
the network interface card (NIC). This ensures that strobing
incurs little CPU overhead as most NICs can count down
and send packets asynchronously.

On reception of the heartbeat, each processor (excluding
the master) is interrupted and downloads a broadcast heart-
beat into network. After downloading the heartbeat, the
processor continues running the currently active job. (This
ensures computation is overlapped with communication.)
When all the heartbeats arrive at a processor, the proces-
sor enters a strobing phase where its kernel downloads any
buffered packets to the network1.

Figure 2 outlines how computation and communication
can be scheduled over a generic processor. At the beginning
of the heartbeat, ��� , the kernel downloads control packets

1Each heartbeat contains information on which processes have packets
ready for download and which processes are asleep waiting to upload a
packet from a particular processor. This information is characterized on a
per-process basis so that on reception of the heartbeat, every processor will
know which processes have data heading for them and which processes on
that processor they are from.



t 0

δ

������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������BARRIER

K

t t t1 2 3

BARRIER

TIME

Computation

Communication

K

K = kernel

Figure 2. Scheduling Computation and Com-
munication. The communication accumu-
lated before � � is downloaded into the network
between � 	 and ��
 .

for the total exchange of information. During the execu-
tion of the barrier synchronization, the user process then re-
gains control of the processor; and at the end of it, the kernel
schedules the pending communication accumulated before
� � to be delivered in the current time slice, i.e.,

�
. At � 	 , the

processor will know the number of incoming packets that it
is going to receive in the communication time-slice as well
as the sources of the packets and will start the downloading
of outgoing packets. (This strategy can be easily extended
to deal with space-sharing where different regions run dif-
ferent sets of programs [5, 9, 17]. In this case, all regions
are synchronized by the same heartbeat.)

The total exchange of information can be properly op-
timized by exploiting the low-level features of the inter-
connection network. For example, if control packets are
given higher priority than background traffic at the send-
ing and receiving endpoints, they can be delivered with pre-
dictable network latency2 during the execution of a direct
total-exchange algorithm3 [14].

The global knowledge of the communication pattern pro-
vided by the total exchange allows for the implementation
of efficient flow-control strategies. For example, it is pos-
sible to avoid congestion inside the network by carefully
scheduling the communication pattern and limiting the neg-
ative effects of hot spots by damping the maximum amount
of information addressed to each processor during a time-
slice. The same information can be used at the kernel
level to provide fault-tolerant communication. For example,
the knowledge of the number of incoming packets greatly
simplifies the implementation of receiver-initiated recovery
protocols.

2The network latency is the time spent in the network without including
source and destination queueing delays.

3In a direct total-exchange algorithm, each packet is sent directly from
source to destination, without intermediate buffering.

3 Experimental Results

As an experimental platform, our working implementa-
tion includes a representative subset of MPI-2 on a detailed
(register-level) simulation model [15]. The run-time sup-
port on this platform includes a standard version of a sub-
stantive subset of MPI-2 and a multitasking version of the
same subset that implements the main features of our pro-
posed methodology. It is worth noting that the multitasking
MPI-2 version is actually much simpler than the sequential
one because the buffering of the communication primitives
greatly simplifies run-time support.

3.1 Characteristics of the Synthetic Workloads

As in [4], the workloads used consist of a collection
of single-program multiple-data (SPMD) parallel jobs that
alternate phases of purely local computation with phases
of interprocess communication. A parallel job consists
of a group of 
 processes where each process is mapped
onto a processor throughout its execution. Processes com-
pute locally for a time uniformly selected in the interval�������
�� �����
�� . By adjusting

�
, we model parallel pro-

grams with different computational granularities; and by
varying � , we change the degree of load-imbalance across
processors. The communication phase consists of an open-
ing barrier, followed by an optional sequence of pairwise
communication events separated by small amounts of local
computation, � , and finally an optional closing barrier.

We consider three communication patterns: Bar-
rier,News, and Transpose. Barrier consists of only the clos-
ing barrier and thus contains no additional dependencies.
We can therefore use this workload to analyze how buffered
coscheduling responds to load imbalance. The other two
patterns consist of a sequence of remote writes. The com-
munication pattern generated by News is based on a sten-
cil with a grid, where each process exchanges information
with its four neighbors. This workload represents those ap-
plications that perform a domain decomposition of the data
set and limit their communication pattern to a fixed set of
partners. Transpose is a communication-intensive workload
that emulates the communication pattern generated by the
FFT transpose algorithm [6], where each process accesses
data on all other processes.

For our synthetic workload, we consider three parallel
jobs with the same computational granularities, load im-
balances, and communication patterns arriving at the same
time in the system. The communication granularity, � , is
fixed at � �"! . The number of communication/computation
iterations is scaled so that each job runs for approximately
one second in a dedicated environment. The system con-
sists of # � processors, and each job requires #�� processes
(i.e. jobs are only time-shared).



3.2 The Simulation Model

The simulation tool that we use in our experimental eval-
uation is called SMART (Simulator of Massive ARchitec-
tures and Topologies) [15], a flexible tool designed to model
the fundamental characteristics of a massively parallel ar-
chitecture. The current version of SMART is based on the
x86 instruction set. The architectural design of the process-
ing nodes is inspired by the Pentium II family of processors.
In particular, it models a two-level cache hierarchy with a
write-back L1 policy and non-blocking caches.

Our experiments consider two networks with #�� process-
ing nodes, representative of two different architectural so-
lutions. The first network is a � -dimensional cube topology
with performance characteristics similar to those of Myrinet
routing and network cards [3]. This network features a one-
way data rate of about � Gb/s and a base network latency of
less than a � s. The second network is based on a #�� -port,
����� -Mb/s Intel Express switch, a popular solution due its
attractive performance/price ratio.

3.3 Resource Utilization

Figures 3 and 4 show the communication/computation
characteristics of our synthetic benchmarks on a Myrinet-
based interconnection network and an Intel Express switch-
based network, respectively, as a function of the communi-
cation pattern, granularity, load imbalance, and time-slice
duration. Each bar shows the percentage of time spent in
one of the following states (averaged over all processors):
computing, context-switching and idling.

For each communication pattern in the Myrinet-based
network, we consider time-slices of ��� � , � , and � ms. In
contrast, for the switch-based network, we consider time-
slices of � , � , and � ms due to the larger communication
overhead and lower bandwidth. In both cases, the context-
switch penalty is ��� � s.

In each group of three bar graphs, the computational
granularity is the same, but the load imbalance is increased
as a function of the granularity itself, i.e., ���	� (i.e. no
variance), �
� � (the variance is equal to the computational
granularity) and ��� �

�
(high degree of imbalance).

Figures 3 (l)-(n) and 4 (l)-(n) show the breakdown for
the Barrier, News, and Transpose workloads when they are
run in dedicated mode with standard MPI-2 run-time sup-
port. For Figures 3 (a)-(i) and 4 (a)-(i), a black square under
a bar denotes a configuration where buffered coscheduling
achieves better resource utilization than MPI-2 user-level
communication, and a circle indicates a configuration where
the performance loss of buffered coscheduling is within �
� .

Based on Figures 3 and 4, we make the following ob-
servations. First, the performance of buffered coschedul-
ing is sensitive to the context-switch latency. As context-

switch latency decreases, resource utilization and through-
put improve. Second, as the load imbalance of a program
increases, the idle time increases. Third, and most impor-
tantly, these initial results indicate that the time-slice length
is a critical parameter in determining overall performance.
A short time-slice can achieve excellent load balancing even
in the presence of highly unbalanced jobs. The downside is
that it amplifies the context-switch latency. On the other
hand, a long time-slice can virtually hide all the context-
switch latency, but it cannot reduce the load imbalance, par-
ticularly in the presence of fine-grained computation.

In Figures 3 (a), (d), and (g) which use a relatively small
time-slice in a Myrinet-based network, buffered coschedul-
ing produces higher processor utilization than when a sin-
gle job runs in a dedicated environment in over ����� of the
cases and produces higher (or no worse than 5% less) re-
source utilization in nearly 75% of the cases.

Taking a big picture view of Figure 3, we conclude that
for high-performance Myrinet-like networks that buffered
coscheduling performs admirably as long as the average
computational grain size is larger than the time-slice and
the time-slice in turn is sufficiently larger than the context-
switch penalty. In addition, when the average computa-
tional grain size is larger than the time-slice, the processor
utilization is mainly influenced by the degree of imbalance.

With a less powerful interconnection network, we find
that buffered coscheduling is even more effective in enhanc-
ing resource utilization. Figures 4 (a), (d), and (g) show
that in a 100-Mb/s switch-based interconnection network,
buffered coscheduling outperforms the basic approach in
� � out of � � configurations with Barrier, � # out � � with
News, and ��� out � � with Transpose. In this last case, the
performance of buffered coscheduling can be improved by
increasing the time-slice.

What makes buffered coscheduling so much more effec-
tive in a less powerful interconnection network? The answer
lies in the “excessive” communication overhead that is in-
curred in these commodity networks when each job is run in
dedicated mode with MPI-2 run-time support; the overhead
is high enough to adversely impact the resource utilization
of the processor and network. For example, by comparing
the graphs for the 500- � s computational granularity in Fig-
ures 3 (l)-(n) and Figures 4 (l)-(n), respectively, we see that
the resource utilization for the switch-based network is sig-
nificantly lower than the Myrinet network when running in
dedicated mode. Consequently, there is substantially more
room for resource-utilization improvement in the switch-
based network, and the buffered coscheduling methodology
takes full advantage this by overlapping computation with
potentially long communication delays/overhead, thus hid-
ing the communication overhead.

Irrespective of the type of network, for the cases where
jobs are perfectly balanced, i.e., ����� , running a sin-



IdleSwitch Compute

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
News, Timeslice 500 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Barrier, Timeslice 1 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Barrier, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
News, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Transpose, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Transpose, Timeslice 1 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Transpose, Timeslice 500 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Barrier

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
News

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Transpose

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
News, Timeslice 1 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Barrier, Timeslice 500 us

a)

d)

b) c)

e) f)

g) h) i)

l) m) n)

Figure 3. Resource Utilization on a Myrinet-Based Interconnection Network.

IdleSwitch Compute

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
News, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Barrier, Timeslice 4 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Barrier, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Barrier, Timeslice 8 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
News, Timeslice 4 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
News, Timeslice 8 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Transpose, Timeslice 8 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Transpose, Timeslice 4 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Transpose, Timeslice 2 ms

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Barrier

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
News

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 ms

Fr
ac

tio
n 

of
 T

im
e

0 1 2

50 ms

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us
Transpose

a)

d)

b) c)

e) f)

g) h) i)

l) m) n)

Figure 4. Resource Utilization on a Switch-Based Network.



gle job only results in marginally better performance be-
cause buffered coscheduling must “pay” the context-switch
penalty without improving the load balance because the
load is already balanced. On the other hand, in the pres-
ence of load imbalance, job multitasking can smooth the
differences in load, resulting in both higher processor and
network utilization.

As a final note, our preliminary experimental results do
not account for the effects of the memory hierarchy on the
working sets of different jobs. As a consequence, buffered
coscheduling requires a larger main memory in order to
avoid memory swapping. We consider this as the main lim-
itation of our approach.

4. Conclusion

In this paper, we presented buffered coscheduling, a
new methodology for multitasking jobs in parallel and dis-
tributed systems. This methodology significantly improves
resource utilization when compared to existing work re-
ported in the literature. It also allows for the implementation
of a global scheduling policy, as done in explicit coschedul-
ing, while maintaining the overlapping of computation and
communication provided by implicit coscheduling.

We initially addressed the complexity of a huge design
space using three families of synthetic workloads — Bar-
rier, News, and Transpose — and two types of networks
— a high-performance Myrinet-based network and a com-
modity switch-based network. Our experimental results
showed that our methodology can provide better resource
utilization, particularly in the presence of load imbalance,
communication-intensive jobs, or a commodity network.

In the future, we intend to examine the throughput
and response time of parallel jobs when using buffered
coscheduling and then comparing its performance to im-
plicit coscheduling or a space-sharing commercial solution
such as LSF. We will also consider the effects of the mem-
ory hierarchy in a real application rather than in synthetic
workloads as presented here.

References

[1] A. C. Arpaci-Dusseau, D. Culler, and A. M. Mainwaring.
Scheduling with Implicit Information in Distributed Systems.
In Proceedings of the 1998 ACM Sigmetrics International
Conference on Measurement and Modeling of Computer Sys-
tems, Madison, WI, June 1998.

[2] R. A. F. Bhoedjang, T. Rühl, and H. E. Bal. User-Level Net-
work Interface Protocols. IEEE Computer, 31(11):53–60,
November 1998.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawick,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A Gigabit-
per-Second Local Area Network. IEEE Micro, 15(1):29–36,
January 1995.

[4] A. C. Dusseau, R. H. Arpaci, and D. E. Culler. Effective Dis-
tributed Scheduling of Parallel Workloads. In Proceedings of
the 1996 ACM Sigmetrics International Conference on Mea-
surement and Modeling of Computer Systems, Philadelphia,
PA, May 1996.

[5] D. G. Feitelson and M. A. Jette. Improved Utilization and
Responsiveness with Gang Scheduling. In D. G. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for Par-
allel Processing, volume 1291 of Lecture Notes in Computer
Science. Springer-Verlag, 1997.

[6] A. Gupta and V. Kumar. The Scalability of FFT on Parallel
Computers. IEEE Transactions on Parallel and Distributed
Systems, 4(8):922–932, August 1993.

[7] A. Gupta, A. Tucker, and S. Urushibara. The Impact of Oper-
ating System Scheduling Policies and Synchronization Meth-
ods on the Performance of Parallel Applications. In Proceed-
ings of the 1991 ACM SIGMETRICS Conference, pages 120–
132, May 1991.

[8] A. Hoisie, O. Lubeck, and H. Wasserman. Scalability Anal-
ysis of Multidimensional Wavefront Algorithms on Large-
Scale SMP Clusters. In The Ninth Symposium on the Fron-
tiers of Massively Parallel Computation (Frontiers’99), An-
napolis, MD, February 1999.

[9] M. A. Jette. Performance Characteristics of Gang Scheduling
in Multiprogrammed Environments. In Supercomputing 97,
San Jose, CA, November 1997.

[10] W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph.
Implications of I/O for Gang Scheduled Workloads. In D. G.
Feitelson and L. Rudolph, editors, Job Scheduling Strategies
for Parallel Processing, volume 1291 of Lecture Notes in
Computer Science. Springer-Verlag, 1997.

[11] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C. R. Das.
A Closer Look At Coscheduling Approaches for a Network
of Workstations. In Eleventh ACM Symposium on Parallel
Algorithms and Architectures, SPAA’99, Saint-Malo, France,
June 1999.

[12] W. E. W. Patrick Sobalvarro, Scott Pakin and A. A. Chien.
Dynamic Coscheduling on Workstation Clusters. In D. G.
Feitelson and L. Rudolph, editors, Job Scheduling Strategies
for Parallel Processing, volume 1459 of Lecture Notes in
Computer Science, pages 231–256. Springer-Verlag, 1998.

[13] F. Petrini. Network Performance with Distributed Memory
Scientific Applications. Submitted to the Journal of Parallel
and Distributed Computing, September 1998.

[14] F. Petrini and W. Feng. Scheduling with Global Information
in Distributed Systems. In Proceedings of the International
Conference on Distributed Computing Systems (ICDCS’00),
April 2000.

[15] F. Petrini and M. Vanneschi. SMART: a Simulator of Mas-
sive ARchitectures and Topologies. In International Con-
ference on Parallel and Distributed Systems Euro-PDS’97,
Barcelona, Spain, June 1997.

[16] P. Sobalvarro and W. E. Weihl. Demand-Based Coschedul-
ing of Parallel Jobs on Multiprogrammed Multiprocessors.
In Proceedings of the 9th International Parallel Processing
Symposium, IPPS’95, Santa Barbara, CA, April 1995.

[17] K. Suzaki and D. Walsh. Implementing the Combination of
Time Sharing and Space Sharing on AP/Linux. In D. G. Fei-
telson and L. Rudolph, editors, Job Scheduling Strategies for
Parallel Processing, volume 1459 of Lecture Notes in Com-
puter Science, pages 83–97. Springer-Verlag, 1998.


